
A�Verified�Confidential�Computing�as�a�
Service�Framework�for�Privacy�Preservation
Hongbo Chen1, Haobin Hiroki Chen1, Mingshen Sun2,

Kang Li3, Zhaofeng Chen3, and XiaoFeng Wang1

1 Indiana University Bloomington, 2 Independent Researcher, 3 CertiK

USENIX Security ’23

Introduction�&�Background

INDIANA UNIVERSITY

Coffee�Incidents

3

INDIANA UNIVERSITY

Privacy�Incidents

Enclave

Privacy
Leakage

Enclave

Privacy
Residue

4

INDIANA UNIVERSITY

TEEʼs�Abilities�and�Inabilities

✓Attestation�

✓Isolation�

✓Encryption

TEE
Confidential
Computing
Services

Secrets

Result

Guarantee�code�integrity�

Prevent�outside�attackers�

Protect�data�confidentiality

5

INDIANA UNIVERSITY

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input Data

When�Confidential�Computing�Become�a�Service

6

INDIANA UNIVERSITY

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input Data

CCaaS�for�Multiple�Data�Providers

7

Not�Trust

Not�Trust�and�Verify

Trust�but�Verify

INDIANA UNIVERSITY

TEEʼs�Abilities�and�Inabilities

8

✦Attestation: guarantee identity of code

✦ Isolation: prevent outside attackers

✦Encryption: protect data safety

⇨cannot prevent data leakage

⇨cannot avoid secrets withheld

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input Data

⇨cannot prove the trustworthiness

Our�goal:�prove�to�the�user�that�the�enclave�
service�cannot�threaten�their�private�information.

INDIANA UNIVERSITY

Proof�of�Being�Forgotten�(PoBF)

10

No Leakage

No Residue

All�secret�and�secret-tainted�values�are�within��
a�confined�zone�during�computation.

After�the�computation�(e.g.,�serving�a�user),�
no�secret�is�found�in�the�enclave.�

+

INDIANA UNIVERSITY

Theoretical�Foundation:�Enclave�Model

11

The CCaaS framework should protect her private data.

4 Formalizing PoBF

We formally define the concept of “Being Forgotten” and
its two requirements for the purpose of establishing theo-
retic foundations to develop trustworthy enclave programs.
However, these intuitive definitions alone have little practical
meaning to the CC community. Developers need to know how

to tweak their software to meet such requirements. Thus, we
propose a generalized model for enclave programs that can
be applied to various hardware TEEs. Based on the model,
we showcase what enclave programs can provably satisfy
PoBF requirements. The proof acts as security constraints for
enclave design, implementation guidelines, and verification
conditions for the PoCF Verifier.

4.1 Modeling the Enclave

General TEE Model with Tags. Processors with TEE sup-
port have two main architectural differences from those with-
out. First, they introduce a new execution mode, namely
EnclaveMode in our model, such that the program running
in this mode can access the data belonging to the enclave.
Second, they restrict access to the enclave from outside the
enclave. We model the generalized TEE in Coq as shown
in Table 1. The accessible locations from the viewpoint of
programs can be either on the stack with an offset (Stack(n)),
a place storing the return value (RV, e.g., RAX in x86-64 ar-
chitecture), or an identifier of other places (Ident(str), e.g.,
other general-purpose registers and heap locations denoted by
an identifier str). Under this model, accessible memory could
be regarded as a set of locations. While the cell c denotes
storable locations from the architectural viewpoint. It contains
a value v either in the untrusted world Normal(v), the enclave
Encalve(et,v), or unused memory Unused. To secure sensi-
tive data, we introduce two types of tags: 1) Security Tag vt,
attached to the value v, to denote the security level; 2) Enclave
Tag et to denote confined Zone locations inside the enclave.
Secret should always be stored inside the confined Zone.
Storable me can then be regarded as a mapping from locations
l to cells c, encoded as a list of pairs List(l,c). This mapping
also provides information about how values are stored on the
machine (e.g., in the Zone of the enclave). Reading a location
involves iterating the storable me and obtaining a result r.
If a location is present as a pair in me, r will be an Ok(v),
otherwise, an error Err(e). Obviously, access to the enclave
locations is restricted to EnclaveMode. Attempting to access
them in NormalMode will result in Err(NoPrivilege), and
attempting to access an unallocated location, Unused, will re-
sult in Err(Invalid). Finally, the state of the enclave st can
be represented by a triplet st = (me, mo, errs), where errs

denotes a list of errors that occurred if any. Raw pointers are

Table 1: Generalized model of secure enclaves.

Type Sym. Definition
Natural n 2 N
String str 2 S
Bool b ::= True|False
Value v

0 ::= ConcreteN(n)|ConcreteB(b)|Any
Sec. Tag vt ::= Secret|NotSecret|Nonsense
TagValue v ::= (v0,vt)
Mode mo ::= EnclaveMode|NormalMode
Location l ::= Stack(n)|Ident(str)|RV
Enc. Tag et ::= Zone|NonZone
Cell c ::= Nomral(v)|Enclave(et,v)|Unused
Result r ::= Ok(X)|Err(e)
Error e ::= Invalid|NoPrivilege
Storable me ::= List (l,c)

not modeled to abstract away most memory errors as modern
programming languages such as Java and Rust enforce type
safety, eliminating memory errors. This aligns with our model
and eliminates the need to model memory safety properties.
Enclave Program Model. To model the program running
inside the enclave, we utilized a modified Imp language to
simplify programming language complexities, while retaining
Turing completeness and expressiveness for reasoning TEE
properties [70]. The syntax, as shown in Table 2, includes
recursively defined Expression and Procedure. Expression
includes a value (i.e., constant), accessing a location, as well
as unary and binary operations. We extend the Imp language
by adding two special statements (i.e., commands), named
Eenter and Eexit, to switch into and out of EnclaveMode.
Note here we deliberately use similar symbols of enclave
enter and exit instructions (EENTER and EEXIT) in Intel SGX
since they are semantically similar. Besides, procedures can
contain commands of assignment and control flow statements,
and their arguments are passed implicitly through storable
locations. Procedures correspond to functions in real-world
programming languages.

This syntax is capable of modeling the complex behav-
iors in mode switching and exceptions (i.e., errors and inter-
rupts) for enclave programs. For example, Intel SGX handles
Asynchronous Enclave Exits by saving the current execution
context to the State Save Area and restoring the previous
state saved at EENTER [28]. AMD SEV handles VMEXIT
by saving the register state of the secure guest VM to the
Virtual Machine Control Block [7]. These world switchings
can be captured by Eenter and Eexit procedures, regardless
of specific hardware TEE. State saving and restoring can be
represented as a series of reads/writes to the storable using
Asgn l := e.

4.2 PoBF Concepts
We outline the concepts of PoBF and their specific require-
ments in detail. First, we present a list of definitions, which
are formally defined in our proof in Coq. We illustrate the

Table 2: Enclave program syntax.

Term Sym. Definition
Exp. e ::= l|v0|UnaryOp(e)|BinaryOp(e1,e2)
Proc. p ::= Nop | Eenter | Eexit | Asgn l := e

|If e Then p1 Else p2 | While e Do p

|p1; p2

concepts in natural language here for better understanding.

Definition 4.1 (Critical State). For a state st = (mo,me,errs),
if a cell c is in the Zone of the enclave memory and its value
is tagged as Secret, then the state st is critical.

Definition 4.2 (Leaked). Given the storable me, if there exists
a location l such that the corresponding cell c is not located
in Zone and contains a value v tagged Secret, then predicate
Leaked(me) evaluates to True, otherwise False.

Definition 4.3 (Strong Residual). Given the storable me, if
there exists a location l such that the corresponding cell
c stores a value v tagged Secret, then predicate strong
Residual

0(me) evaluates to True, otherwise False.

Definition 4.4 (Weak Residual). Weak Residual is the same
as strong Residual

0 except that it allows the return value
location RV to hold a value v tagged Secret.

Definition 4.5 (Being Forgotten for A Procedure). Being
Forgotten BF(p,st) is a predicate evaluating to True when
Leaked evaluates to False all along the execution of p on
initial state st, in conjunction with (weak or strong) Residual
evaluates to False at ending state st

0 after p is executed.
Otherwise, BF evaluates to False.

Here, Leaked and Residue are predicates, deriving two se-
curity requirements of BF – NOLEAKAGE and NORESIDUE,
each requiring that the corresponding predicates evaluate to
False, i.e., BF := ¬Leaked^¬Residue. We expect the en-
clave program to have BF property, meaning that it meets both
NOLEAKAGE and NORESIDUE requirements. For NOLEAK-
AGE requirement, if we want Leaked(me) to evaluate to
False, the secrets should remain within a designated "Zone"
along the execution. However, for NORESIDUE, the strong
Residual

0 may lack practical meanings since it disallows
inter-procedural secrets. So we define weak Residual where
Secret value can be left on and passed via the return value
RV. Therefore, the whole task satisfies BF when both Leaked

and weak Residue evaluate to False for all the procedures
in the task, except that strong Residual

0 evaluate to False

for the last procedure. Such treatment is practical and secure
because it permits the secure flow of secrets and prevents
leakage throughout the task. Being Forgotten for a task T ,
BF(T), is defined in this way. We say a task T has the Proof
of Being Forgotten (PoBF) property when BF(T) evaluates to
true, i.e., BF holds for task T .

4.3 PoBF Security Constraints
Single-user enclaves don’t require handling of residue as they
self-destruct after the execution. However, for multi-user en-
claves serving persistently, privacy residue from users must be
erased to prevent subsequent malicious attackers from learn-
ing sensitive information. We address the security constraints
necessary to fulfill NOLEAKAGE and NORESIDUE.

Theorem 4.1 (Constraints For NOLEAKAGE). For procedure
p with initial state st = (me, mo, errs), x‘executing p does
not leak the secret if: 1) the initial state st does not leak secret.
2) all memory writes (Asgn l := e) in p are within Zone if e

is tagged with Secret. 3) p aborts when an error occurs.

This theorem is intuitive and mechanically proved in Coq.
The first prerequisite establishes a clean starting point, which
is satisfied right after enclave initialization. The second one
mandates that all writes of Secret be confined within the
Zone to prevent privacy breaches. The third constraint elim-
inates potential errors resulting from malfunctioning opera-
tions (e.g., accesses to Unused memory). Note that NOLEAK-
AGE does not necessarily mean only these three conditions
are met, as there may be alternative security constraints that
provably guarantee NOLEAKAGE. Prior to examining the the-
orem corresponding to NORESIDUE, an auxiliary procedure,
zeroize, is introduced to aid in scrubbing privacy residue.

Definition 4.6 (Zeroize). A procedure is defined as zeroize if,
for the given storable me = (l,c) denoting every location-cell
pair in the Zone of the enclave, it clears the tagged values v

stored in such cells c and sets the security tag to NotSecret.

Theorem 4.2 (Constraints for NORESIDUE). For a pro-
cedure p, if it satisfies the NOLEAKAGE requirement, the
procedure p

0 derived by concatenating p and zerorize (i.e.,
p

0 = p; zerorize) satisfies the NORESIDUE requirement.

A challenge of applying Theorem 4.2 to every procedure
is that all intermediate computation results must be cleared
within the Zone, hindering the implementation. Alternatively,
we only focus on procedures executed in critical states and
loosen the requirement for zeroize to ignore RV for all pro-
cedures p. Procedures running in critical states must meet
the NORESIDUE requirement. The last procedure of a task
should not end in a critical state, which means that no secrete
is presented (e.g., the final result is encrypted to RV). This
can be achieved by instrumentation that executes a function
zerorize() at the end of each procedure executed in critical
states. Its implementation details are discussed in § 6.
Concurrent Execution. From a resource management stand-
point, concurrent enclave programs can result in potential
privacy leakage due to the sharing of resources among users.
To mitigate this risk, shared resources should be disallowed.
As a result, executing a multi-threaded enclave is equivalent
to executing separate single-threaded tasks. A multi-threaded

INDIANA UNIVERSITY

Theoretical�Foundation:�NoLeakage�Theorem

12

• Its�initial�state�is�secure;�
• All�memory�writes�are�within�the�Zone;�
• It�aborts�when�error�occurs;

A�procedureʼs�execution�does�not�leak�secret.

INDIANA UNIVERSITY

Theoretical�Foundation:�NoResidue�Theorem

13

If�the�Zerorize�procedure�is�executed�at�the�end�of�a�function,�
then�no�sensitive�data�residue�is�left�in�the�enclave.�

zerorize Clears�the�values�stored�in�the�confined�zone.

INDIANA UNIVERSITY

Theoretical�Foundation:�Checked�by�Coq

14

✓Mechanically�Checked�by�Coq

Realizing�the�secure�enclave�service.

INDIANA UNIVERSITY

Design�Goals

16

Security:

Auxiliary:

No Leakage No Residue Verifiable

• Minimal�code�modification�
• Various�hardware�TEE�support

INDIANA UNIVERSITY

PoBF-Compliant�Framework�(PoCF)

17

Cloud
Hardware TEE

Deploy
Platform
Admin

PoCF Enclave

PoCF Library

CC Task
Submit

Developer

Attestation Data
Provider

Verification
PoCF

Verifier

System�Overview

Our�Artifacts:�
• PoCF�Library�(TEE-Agnostic)�
• PoCF�Enclave�(TEE-Specific)�
• PoCF�Verifier�

Submitted�by�3rd�Party�Developer:�
• CC�(Confidential�Computing)�

TaskTrusted Untrusted

INDIANA UNIVERSITY

Pillar�of�PoCF:�Workflow�Integrity

18

Type�Safety

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input DataMemory�Safety

Control�Flow�Integrity

Workflow�Integrity?

Typestate�Specification

✓ Specified.�

✓ Enforced�by�Rust.�

✓ Verified�by�Prusti.�

✓ Statically�checked.�

✓ Finally,�workflow�integrity�
guaranteed�with�minor�
runtime�cost!

19

but also the key and data tied to the task. The state of the
key and data (K and D) are dependent on the state of the task
S, so their transition possibilities are restricted accordingly.
For example, when the task is in ResultDecrypted state, the
key is AllowedOnce, meaning it can only be used once. Trait
bounds serve as a contract for the generic types to implement
the required interfaces. For instance, the key type must imple-
ment Zerorize which writes zeros on the memory housing it
when it is Invalidated. By implementing transition functions
on the corresponding typestates with generics satisfying the
contract, the state machine can be trustworthily constructed.

Listing 1: Typestate abstraction and specification.
1 pub struct Task<S, K, D> where
2 S: TaskState + DataState + KeyState,

3 K: Zeroize + Default, D: EncDec<K>,

4 <S as DataState>::State: DState,

5 <S as KeyState>::State: KState,

6 {

7 data: Data<<S as DataState>::State, D, K>,

8 key: Key<K, <S as KeyState>::State>,

9 _state: S,

10 }

11

12 pub trait TaskState {

13 #[pure]
14 fn is_initialized(&self) -> bool {false}

15 #[pure]
16 fn is_finished(&self) -> bool {false}

17 // Other similar functions are omitted.

18 }

19

20 pub struct Initialized;

21 #[refine_trait_spec]
22 impl TaskState for Initialized {

23 #[pure]
24 #[ensures(result == true)]
25 fn is_initialized(&self) -> bool {true}

26 }

27

28 #[ensures((&result)._state.is_allowed_once())]
29 // Other similar specifications are omitted

30 pub fn cc_compute(self) ->

31 Task<ResultEncrypted,Invalid,EncryptedOutput>;

Note that some states and transition functions in Figure 3
are represented by dotted lines, indicating they are private.
These interfaces and typestates are exclusively visible to the
PoCF Library but not to dependent artifacts at the language

level. By capitalizing on this access control language feature,
we can avert explicit access to sensitive data (e.g., task.key)
and make private transitions atomic for the caller. Moreover,
all fields in Task are all private, with the only visible function
at DataReceived state being cc_compute(), which decrypts
input data, executes the CC Task, and encrypts the outputs.
This design obscures the states where the data is in plaintext,
reducing the risk of data exposure. Additionally, as the Task
struct does not include shared resources, it is self-contained
and can be safely used in concurrent enclaves.

However, language-level access control alone is insuffi-
cient to ensure the privacy of secrets, especially in memory-

unsafe languages like C. For instance, a direct dereference of
a pointer to Task results in direct access to raw data. So, the
TEE-specific enclave must mitigate such risks. We discuss
the solution in the next subsection.

Scrubbing Residue. The transition functions correspond to
the procedures in the PoBF formal model. The Task struct
manages residue automatically, as its transition functions take
itself as input and return a Task object in a new state, where
Zerorize() is invoked as specified in the trait bounds. Although
the state machine based on the typestate scrubs residue at the
language level, sensitive data may linger in memory. The con-
tent of a freed (e.g., by free() in libc) memory block may
still be partially recoverable by a raw pointer to that block, as
libc does not specify freed memory blocks to be zeroed out.
Therefore, we devise the Zerorize contract to handle residue.
Transition functions are instrumented to enforce that stacks
and registers except return values are cleared at the function
epilogue. As for the heap, we patch the corresponding deal-
locator (e.g., dealloc function in Rust SGX SDK) to ensure
that freed memories are zerorized. Besides, the protected Key

struct must implement the Zerorize trait, as it must be in-
validated before the task is Finished. This occurs when the
output is encrypted using the key. The Data type does not
need this contract since it can be encrypted in place, and the
ciphertext is not secret. Thus, the weak Residue is evaluated
as false in the transition functions.

Verification of the State Machine. Using the PoCF Library
alone cannot fully satisfy the security requirements for en-
clave programs. To bridge the gap between the design and the
implementation, we need a formal specification and mechani-
cally check it in accordance with the code. This is achieved
with Prusti [12], an automatic verification tool for Rust. We
implement the typestate-based state machine as structs with
associated traits (i.e., TaskState, KState, DState in List-
ing 1). To encode the specification, we write pure functions
serving as the contract to represent its current state (line 13-16
in Listing 1). These functions aid Prusti in the verification
of correctness, with which Prusti generate verification state-
ments and proves them for each state.

6.2 The PoCF Enclave

Implementation. The PoCF Enclave is responsible for ex-
ecuting CC tasks securely. It is built on top of the PoBF
Library with the CC Task code submitted by an untrusted
developer. The platform oversees TEE-specific operations
such as enclave initialization and remote attestation. The pro-
totypes are implemented on Intel SGX AMD SEV due to
their maturity. Adhering to the formal model that requires
execution integrity and memory safety to be enforced, the
SGX prototype utilizes Teaclave SGX SDK [86] and the SEV
prototype deploys the standard library. The PoCF Enclave
for SGX supports DCAP [47] and EPID [48] attestations,

INDIANA UNIVERSITY

Workflow�Integrity�by�Rust�&�Typestate

20

Type�Safety

Secure Channel
Establishment

Input Data
Provision

Decryption

Task Execution

Encryption

Output Data
Result Return

Key Negotiation
Data Provider

Task
Submission Third-party

Developer

Data Provider

Data Provider CCaaS Framework

Input DataMemory�Safety

Control�Flow�Integrity

Workflow�Integrity

NoResidue�Instrumentation

✓Heap:�modified�Memory�Allocator

✓Global:�not�mutable

✓Stack�and�Registers:�Instrumentation

21

but also the key and data tied to the task. The state of the
key and data (K and D) are dependent on the state of the task
S, so their transition possibilities are restricted accordingly.
For example, when the task is in ResultDecrypted state, the
key is AllowedOnce, meaning it can only be used once. Trait
bounds serve as a contract for the generic types to implement
the required interfaces. For instance, the key type must imple-
ment Zerorize which writes zeros on the memory housing it
when it is Invalidated. By implementing transition functions
on the corresponding typestates with generics satisfying the
contract, the state machine can be trustworthily constructed.

Listing 1: Typestate abstraction and specification.
1 pub struct Task<S, K, D> where
2 S: TaskState + DataState + KeyState,

3 K: Zeroize + Default, D: EncDec<K>,

4 <S as DataState>::State: DState,

5 <S as KeyState>::State: KState,

6 {

7 data: Data<<S as DataState>::State, D, K>,

8 key: Key<K, <S as KeyState>::State>,

9 _state: S,

10 }

11

12 pub trait TaskState {

13 #[pure]
14 fn is_initialized(&self) -> bool {false}

15 #[pure]
16 fn is_finished(&self) -> bool {false}

17 // Other similar functions are omitted.

18 }

19

20 pub struct Initialized;

21 #[refine_trait_spec]
22 impl TaskState for Initialized {

23 #[pure]
24 #[ensures(result == true)]
25 fn is_initialized(&self) -> bool {true}

26 }

27

28 #[ensures((&result)._state.is_allowed_once())]
29 // Other similar specifications are omitted

30 pub fn cc_compute(self) ->

31 Task<ResultEncrypted,Invalid,EncryptedOutput>;

Note that some states and transition functions in Figure 3
are represented by dotted lines, indicating they are private.
These interfaces and typestates are exclusively visible to the
PoCF Library but not to dependent artifacts at the language

level. By capitalizing on this access control language feature,
we can avert explicit access to sensitive data (e.g., task.key)
and make private transitions atomic for the caller. Moreover,
all fields in Task are all private, with the only visible function
at DataReceived state being cc_compute(), which decrypts
input data, executes the CC Task, and encrypts the outputs.
This design obscures the states where the data is in plaintext,
reducing the risk of data exposure. Additionally, as the Task
struct does not include shared resources, it is self-contained
and can be safely used in concurrent enclaves.

However, language-level access control alone is insuffi-
cient to ensure the privacy of secrets, especially in memory-

unsafe languages like C. For instance, a direct dereference of
a pointer to Task results in direct access to raw data. So, the
TEE-specific enclave must mitigate such risks. We discuss
the solution in the next subsection.

Scrubbing Residue. The transition functions correspond to
the procedures in the PoBF formal model. The Task struct
manages residue automatically, as its transition functions take
itself as input and return a Task object in a new state, where
Zerorize() is invoked as specified in the trait bounds. Although
the state machine based on the typestate scrubs residue at the
language level, sensitive data may linger in memory. The con-
tent of a freed (e.g., by free() in libc) memory block may
still be partially recoverable by a raw pointer to that block, as
libc does not specify freed memory blocks to be zeroed out.
Therefore, we devise the Zerorize contract to handle residue.
Transition functions are instrumented to enforce that stacks
and registers except return values are cleared at the function
epilogue. As for the heap, we patch the corresponding deal-
locator (e.g., dealloc function in Rust SGX SDK) to ensure
that freed memories are zerorized. Besides, the protected Key

struct must implement the Zerorize trait, as it must be in-
validated before the task is Finished. This occurs when the
output is encrypted using the key. The Data type does not
need this contract since it can be encrypted in place, and the
ciphertext is not secret. Thus, the weak Residue is evaluated
as false in the transition functions.

Verification of the State Machine. Using the PoCF Library
alone cannot fully satisfy the security requirements for en-
clave programs. To bridge the gap between the design and the
implementation, we need a formal specification and mechani-
cally check it in accordance with the code. This is achieved
with Prusti [12], an automatic verification tool for Rust. We
implement the typestate-based state machine as structs with
associated traits (i.e., TaskState, KState, DState in List-
ing 1). To encode the specification, we write pure functions
serving as the contract to represent its current state (line 13-16
in Listing 1). These functions aid Prusti in the verification
of correctness, with which Prusti generate verification state-
ments and proves them for each state.

6.2 The PoCF Enclave

Implementation. The PoCF Enclave is responsible for ex-
ecuting CC tasks securely. It is built on top of the PoBF
Library with the CC Task code submitted by an untrusted
developer. The platform oversees TEE-specific operations
such as enclave initialization and remote attestation. The pro-
totypes are implemented on Intel SGX AMD SEV due to
their maturity. Adhering to the formal model that requires
execution integrity and memory safety to be enforced, the
SGX prototype utilizes Teaclave SGX SDK [86] and the SEV
prototype deploys the standard library. The PoCF Enclave
for SGX supports DCAP [47] and EPID [48] attestations,

No Residue

INDIANA UNIVERSITY

NoLeakage�Verification

22

✓Edge�function�calls:�does�not�leak�secret.�

• E.g.,�OCALL�in�SGX�and�call�to�the�hypervisor�in�SEV�

✓Static�taint�analysis�

• Keyʼs�tracking:�typestate�

• Data�tracking:�MIRAIʼs�taint�analysis

No Leakage

INDIANA UNIVERSITY

PoCF�Verifier

23

• Once�CC�Task�Submitted:�the�deployer�verifies�it.�

1. Pass�Verification:�PoCF�Enclave�compiled.�

• Data�providers:�

1. Obtain�the�source�code.�

2. Conduct�verification.�

3. Calculate�measurement.�

4. Feed�data.�

• Trusted�builder:�proprietary�code.

Verifiable

PoCF:�Publicly�Available

Evaluation

INDIANA UNIVERSITY

Summary�of�Evaluation�Results

25

1.PoCF�reaches�its�design�goals.�

2.PoCF�incurs�negligible�overhead�in�CPU-bound�tasks.�

3.PoCF�exhibits�degradation�in�IO-bound�tasks�(lack�of�IO�optimizations).�

4.The�data�flow�tracking�tool�is�not�very�accurate.

Questions?

INDIANA UNIVERSITY

Youʼre�welcome�to�try�and�star�our�artifact!

Github: ya0guang/PoBF

Thanks!

Backup�Slides

INDIANA UNIVERSITY

PoCF�Library:�TEE-Agnostic�State�Machine

30

establish_channel()

receive_data()

Channel
Established

decrypt_data()

cc_compute()

Data
Received

private_compute()

Data
Decrypted

encrypt_result()

Result
Decrypted

take_result()
Result

Encrypted

Finished

Initialized
K: Uninitialized
D: Uninitialized

K: AllowedTwice
D: Uninitialized

K: AllowedTwice
D: EncryptedInput

K: AllowedOnce
D: DecryptedInput

K: AllowedOnce
D: DecryptedOutput

K: Invalid
D: EncryptedOutput

INDIANA UNIVERSITY

PoCF�Enclave:�TEE-Specific�Enclave�Service

31

• Intel�SGX�
• DCAP�&�EPID�Attestation�
• Teaclave�(Rust)�SGX�SDK�
• ECALL�&�OCALL

• AMD�SEV�on�Azure�
• Azure�Attestation�Service�
• Standard�Library

Cloud
Hardware TEE

Deploy
Platform
Admin

PoCF Enclave

PoCF Library

CC Task
Submit

Developer

Attestation Data
Provider

Verification
PoCF

Verifier

Effortless�Porting

32

• Verifier�invocations�wrapped.�
• Seamless�use�of�standard�library

INDIANA UNIVERSITY

Taint�Analysis:�Accuracy�of�MIRAI

33

Table 4: The precision test of MIRAI categorized by Rust features.

Test Name Covered Rust Features Expected Actual Missed Feature(s)
untrusted_input Traits, generics, and arrays X X /
control_flows Loops, branches, and pattern matches 7: 1; �: 5 �: 6 /

ownership_transfer Ownership and borrow check 7: 2 7: 2 /
pointers Smart and raw pointers 7: 4 7: 1 Leakage by Rc<T>, Box<T>, and *const T.

complex_structs Collections and structs 7: 4 7:1 Tag propagation from field to the whole struct
All the tests were analyzed by MIRAI using its strictest analysis level, i.e., MIRAI_FLAG=diag=paranoid.

X: No data leakage; 7: Has data leakage; �: Possible data leakage. The number behind “7” or “�” denotes the number of data leakages.

(a) Polybench: Performance of POCF and NATIVE on SGX.

(b) Polybench: Performance of POCF and NATIVE on SEV.

Figure 4: Performance of Polybench microbenchmarks.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(a) Cost breakup of PoCF on SGX.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(b) Cost breakup of PoCF on SEV.

Figure 5: Identity task: Performance breakup of PoCF.

20 21 22 23 24 25 26 27 28

Number of Pages

10�2

10�1

100

101

102

103

104

105

106

T
im

e
(m

s)

input = 100KB

input = 100MB

(a) Service time on SGX.

20 21 22 23 24 25 26 27 28

Number of Pages

200

400

600

800

1000

1200

T
im

e
(m

s)

input = 100KB

input = 100MB

(b) Service time on SEV.

Figure 6: Service time under the different cleared pages.

uations. The results can be found in Table 5, Figure 4, and
Figure 5, with 10 repetitions of each subtask in each experi-
ment setting. We measure the elapsed service time inside the
enclave for the identity task and the elapsed time to execute
the CC Task in Polybench. NATIVE service runs inside an
SGX enclave or encrypted VM in SEV without PoCF miti-
gations, while POCF denotes our system in which Zerorize

instrumentation is configured to clear at most 20 pages on the
stack at function epilogues. The overhead is negligible, with
average overheads in the identity task and Polybench being
1.24% and 0.28% respectively on SGX, and 0.86% and 0.94%
on SEV. Such overheads imply PoCF protections cause a mi-
nor performance downgrade in computation. We also observe
that the time spent on establishing a trusted channel is less
relevant to the data size. However, the cost increases slowly
with input sizes < 10MB but linearly in 10-100MB, primarily
due to the proportional growth of data-dependent workloads.

Overhead Analysis. Static checks (i.e., analysis of compiler

INDIANA UNIVERSITY

Microbenchmark:�Polybench

34

Table 4: The precision test of MIRAI categorized by Rust features.

Test Name Covered Rust Features Expected Actual Missed Feature(s)
untrusted_input Traits, generics, and arrays X X /
control_flows Loops, branches, and pattern matches 7: 1; �: 5 �: 6 /

ownership_transfer Ownership and borrow check 7: 2 7: 2 /
pointers Smart and raw pointers 7: 4 7: 1 Leakage by Rc<T>, Box<T>, and *const T.

complex_structs Collections and structs 7: 4 7:1 Tag propagation from field to the whole struct
All the tests were analyzed by MIRAI using its strictest analysis level, i.e., MIRAI_FLAG=diag=paranoid.

X: No data leakage; 7: Has data leakage; �: Possible data leakage. The number behind “7” or “�” denotes the number of data leakages.

(a) Polybench: Performance of POCF and NATIVE on SGX.

(b) Polybench: Performance of POCF and NATIVE on SEV.

Figure 4: Performance of Polybench microbenchmarks.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(a) Cost breakup of PoCF on SGX.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(b) Cost breakup of PoCF on SEV.

Figure 5: Identity task: Performance breakup of PoCF.

20 21 22 23 24 25 26 27 28

Number of Pages

10�2

10�1

100

101

102

103

104

105

106

T
im

e
(m

s)

input = 100KB

input = 100MB

(a) Service time on SGX.

20 21 22 23 24 25 26 27 28

Number of Pages

200

400

600

800

1000

1200

T
im

e
(m

s)

input = 100KB

input = 100MB

(b) Service time on SEV.

Figure 6: Service time under the different cleared pages.

uations. The results can be found in Table 5, Figure 4, and
Figure 5, with 10 repetitions of each subtask in each experi-
ment setting. We measure the elapsed service time inside the
enclave for the identity task and the elapsed time to execute
the CC Task in Polybench. NATIVE service runs inside an
SGX enclave or encrypted VM in SEV without PoCF miti-
gations, while POCF denotes our system in which Zerorize

instrumentation is configured to clear at most 20 pages on the
stack at function epilogues. The overhead is negligible, with
average overheads in the identity task and Polybench being
1.24% and 0.28% respectively on SGX, and 0.86% and 0.94%
on SEV. Such overheads imply PoCF protections cause a mi-
nor performance downgrade in computation. We also observe
that the time spent on establishing a trusted channel is less
relevant to the data size. However, the cost increases slowly
with input sizes < 10MB but linearly in 10-100MB, primarily
due to the proportional growth of data-dependent workloads.

Overhead Analysis. Static checks (i.e., analysis of compiler

Table 4: The precision test of MIRAI categorized by Rust features.

Test Name Covered Rust Features Expected Actual Missed Feature(s)
untrusted_input Traits, generics, and arrays X X /
control_flows Loops, branches, and pattern matches 7: 1; �: 5 �: 6 /

ownership_transfer Ownership and borrow check 7: 2 7: 2 /
pointers Smart and raw pointers 7: 4 7: 1 Leakage by Rc<T>, Box<T>, and *const T.

complex_structs Collections and structs 7: 4 7:1 Tag propagation from field to the whole struct
All the tests were analyzed by MIRAI using its strictest analysis level, i.e., MIRAI_FLAG=diag=paranoid.

X: No data leakage; 7: Has data leakage; �: Possible data leakage. The number behind “7” or “�” denotes the number of data leakages.

(a) Polybench: Performance of POCF and NATIVE on SGX.

(b) Polybench: Performance of POCF and NATIVE on SEV.

Figure 4: Performance of Polybench microbenchmarks.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(a) Cost breakup of PoCF on SGX.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(b) Cost breakup of PoCF on SEV.

Figure 5: Identity task: Performance breakup of PoCF.

20 21 22 23 24 25 26 27 28

Number of Pages

10�2

10�1

100

101

102

103

104

105

106

T
im

e
(m

s)

input = 100KB

input = 100MB

(a) Service time on SGX.

20 21 22 23 24 25 26 27 28

Number of Pages

200

400

600

800

1000

1200

T
im

e
(m

s)

input = 100KB

input = 100MB

(b) Service time on SEV.

Figure 6: Service time under the different cleared pages.

uations. The results can be found in Table 5, Figure 4, and
Figure 5, with 10 repetitions of each subtask in each experi-
ment setting. We measure the elapsed service time inside the
enclave for the identity task and the elapsed time to execute
the CC Task in Polybench. NATIVE service runs inside an
SGX enclave or encrypted VM in SEV without PoCF miti-
gations, while POCF denotes our system in which Zerorize

instrumentation is configured to clear at most 20 pages on the
stack at function epilogues. The overhead is negligible, with
average overheads in the identity task and Polybench being
1.24% and 0.28% respectively on SGX, and 0.86% and 0.94%
on SEV. Such overheads imply PoCF protections cause a mi-
nor performance downgrade in computation. We also observe
that the time spent on establishing a trusted channel is less
relevant to the data size. However, the cost increases slowly
with input sizes < 10MB but linearly in 10-100MB, primarily
due to the proportional growth of data-dependent workloads.

Overhead Analysis. Static checks (i.e., analysis of compiler

INDIANA UNIVERSITY

Microbenchmark:�Overhead�Analysis

35

Table 4: The precision test of MIRAI categorized by Rust features.

Test Name Covered Rust Features Expected Actual Missed Feature(s)
untrusted_input Traits, generics, and arrays X X /
control_flows Loops, branches, and pattern matches 7: 1; �: 5 �: 6 /

ownership_transfer Ownership and borrow check 7: 2 7: 2 /
pointers Smart and raw pointers 7: 4 7: 1 Leakage by Rc<T>, Box<T>, and *const T.

complex_structs Collections and structs 7: 4 7:1 Tag propagation from field to the whole struct
All the tests were analyzed by MIRAI using its strictest analysis level, i.e., MIRAI_FLAG=diag=paranoid.

X: No data leakage; 7: Has data leakage; �: Possible data leakage. The number behind “7” or “�” denotes the number of data leakages.

(a) Polybench: Performance of POCF and NATIVE on SGX.

(b) Polybench: Performance of POCF and NATIVE on SEV.

Figure 4: Performance of Polybench microbenchmarks.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(a) Cost breakup of PoCF on SGX.

1KB 10KB
100K

B 1MB 10MB
100M

B

Data Size

100

105

1010

1015

1020

1025

T
im

e
(u

s)

Decryption

CC Task

Encryption

Channel Creation

Data Transfer

(b) Cost breakup of PoCF on SEV.

Figure 5: Identity task: Performance breakup of PoCF.

20 21 22 23 24 25 26 27 28

Number of Pages

10�2

10�1

100

101

102

103

104

105

106

T
im

e
(m

s)

input = 100KB

input = 100MB

(a) Service time on SGX.

20 21 22 23 24 25 26 27 28

Number of Pages

200

400

600

800

1000

1200

T
im

e
(m

s)

input = 100KB

input = 100MB

(b) Service time on SEV.

Figure 6: Service time under the different cleared pages.

uations. The results can be found in Table 5, Figure 4, and
Figure 5, with 10 repetitions of each subtask in each experi-
ment setting. We measure the elapsed service time inside the
enclave for the identity task and the elapsed time to execute
the CC Task in Polybench. NATIVE service runs inside an
SGX enclave or encrypted VM in SEV without PoCF miti-
gations, while POCF denotes our system in which Zerorize

instrumentation is configured to clear at most 20 pages on the
stack at function epilogues. The overhead is negligible, with
average overheads in the identity task and Polybench being
1.24% and 0.28% respectively on SGX, and 0.86% and 0.94%
on SEV. Such overheads imply PoCF protections cause a mi-
nor performance downgrade in computation. We also observe
that the time spent on establishing a trusted channel is less
relevant to the data size. However, the cost increases slowly
with input sizes < 10MB but linearly in 10-100MB, primarily
due to the proportional growth of data-dependent workloads.

Overhead Analysis. Static checks (i.e., analysis of compiler

Table 5: Identity Task: Time (ms) under Different Data Sizes.

Config 1KB 10KB 100KB 1MB 10MB 100MB
NATIVE X 275.8 281.1 296.3 536.7 3026.5 28018.3
P W/O T X 278.3 280.4 298.6 541.1 3033.9 28022.9
P W/ T X 277.3 287.4 301.7 545.0 3043.7 28215.0
NATIVE V 489.1 487.3 449.7 495.6 502.0 923.3
POCF V 489.5 492.3 454.4 499.8 506.5 934.8

P: PoCF without data flow tracking; T data flow tracking; X: SGX; V: SEV

and MIRAI) incur no runtime overhead. Comparing the re-
sults of P W/O T X and P W/ T X in Table 5, we observe
that typestate transition only incurs 0.82% performance degra-
dation on average, which is very minor. Another portion of
runtime overhead in PoCF comes from residue cleanup (i.e.,
zerorizing the stack and register), which incurs 0.42% over-
head by comparing P W/O T X and NATIVE X. As shown
in Figure 6, zerorizing more pages does not spend more time
significantly, and we can even set it to the maximum stack
size. In our evaluations, we set the number of cleared pages
as 20 because it is enough for the benchmarks.
Macrobenchmarks. We port three the real-world applica-
tions to PoCF and other well-maintained SGX middlewares1.
POCF and NATIVE are the same as those in the microben-
mark. LINUX is the setting where NATIVE is executed in the
normal world without using SGX. GRAMINE2 is a C-based
LibOS that supports unmodified binaries in SGX enclave [14].
OCCLUM is a Rust-based LibOS [74]. ENARX can host We-
bAssembly module for multiple TEE backends [13]. We use
the release version of these middlewares: Gramine v1.3.1-1,
Occlum 0.29.4-1, and Enarx 0.6.4. For all these evaluation
settings other than ENARX and LINUX where the enclave
size cannot be configured, we set the maximum enclave size
to 8GB 3 and the maximum thread number to 16. We mea-
sure the elapsed time from the data provider’s end since the
LibOS is transparent to the process. All the steps in CCaaS
are counted, except for LINUX where attestation cannot be
performed. ENARX does not support multi-threading, so we
omit its multi-threading performance.
• CPU-bound: AI Inference. We use TVM to compile
ResNet152 Model [17] as a library and link it to our frame-
work, The Python script achieves this task in 125 lines of code
(LoC), and the Rust function of the ResNet CC Task contains
50 LoC. We believe such porting effort is acceptable. It takes
600 KB ndarray input and outputs a label.
• Memory-bound: FASTA. We port the FASTA format ge-
nomic sequence generation algorithm [86]. This algorithm
generates DNA sequences by copying from a given sequence
and weighted random selection from two alphabets. The input
and output sizes are both 4.4MB FASTA format sequences.

1We do not evaluate middlewares on SEV since it has no compatibility
concern as SGX, hence few middlewares support SEV.

2Gramine is previously called Graphene [23].
3For Occlum, an additional 320MB memory is reserved for LibOS.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(m

s)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

T
im

e
(s

)
us

ed
pe

r
re

qu
es

t

(b) Multi-threaded.

Figure 7: Macrobenchmark: AI inference execution time.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
(s

)
us

ed
pe

r
re

qu
es

t

(b) Multi-threaded.

Figure 8: Macrobenchmark: FASTA execution time.

• IO- and memory- bound: In-memory key-value database

(KVDB). We use hashbrown [80], a Rust port of Google Swiss
Table, to build an in-memory KVDB. We leverage YCSB [27],
a standard benchmark for KV stores, to generate datasets and
workloads in evaluations. The dataset contains 220 KV of
8B keys paired with 1KB value, and the whole dataset is
1GB. We pick two workloads: A contains 50% reads and 50%
writes, while C contains 100% reads. These two representative
workloads are the lower and upper bounds for read-write
ratios in YCSB, demonstrating a real-world deployment.

We depict the results of AI inference, FASTA, and KVDB
in Figure 7, Figure 8 and Figure 9, respectively. In multi-
threading scenarios of AI inference and FASTA tasks, we
present the average service time per request after serving all
four data providers. By comparing NATIVE with our solu-
tion, we confirm again that the overhead induced by PoCF
protections is minor. In the KVDB payload where eight data
providers dispatch queries, POCF incurs 1.12% and 6.92%
overhead in single-thread mode and 1.98% and 4.95% over-
head in multi-threading compared to NATIVE, respectively
on SGX and SEV. In the AI inference task, we notice that
PoCF has comparable performance with other TEE middle-
wares, both in single-threaded and multi-threaded scenarios
(Figure 7). However, in the FASTA task, LibOSes-based solu-
tions outperform PoCF, and their advantages are greater than
those in the AI inference task. In KVDB payloads, LibOSes
perform much better than SGX PoCF. We attribute this to data
dependency and lack of I/O optimization in our SGX imple-
mentation, while SEV necessitates no network optimization.

INDIANA UNIVERSITY

Macrobenchmark:�AI�Inference

36

Table 5: Identity Task: Time (ms) under Different Data Sizes.

Config 1KB 10KB 100KB 1MB 10MB 100MB
NATIVE X 275.8 281.1 296.3 536.7 3026.5 28018.3
P W/O T X 278.3 280.4 298.6 541.1 3033.9 28022.9
P W/ T X 277.3 287.4 301.7 545.0 3043.7 28215.0
NATIVE V 489.1 487.3 449.7 495.6 502.0 923.3
POCF V 489.5 492.3 454.4 499.8 506.5 934.8

P: PoCF without data flow tracking; T data flow tracking; X: SGX; V: SEV

and MIRAI) incur no runtime overhead. Comparing the re-
sults of P W/O T X and P W/ T X in Table 5, we observe
that typestate transition only incurs 0.82% performance degra-
dation on average, which is very minor. Another portion of
runtime overhead in PoCF comes from residue cleanup (i.e.,
zerorizing the stack and register), which incurs 0.42% over-
head by comparing P W/O T X and NATIVE X. As shown
in Figure 6, zerorizing more pages does not spend more time
significantly, and we can even set it to the maximum stack
size. In our evaluations, we set the number of cleared pages
as 20 because it is enough for the benchmarks.
Macrobenchmarks. We port three the real-world applica-
tions to PoCF and other well-maintained SGX middlewares1.
POCF and NATIVE are the same as those in the microben-
mark. LINUX is the setting where NATIVE is executed in the
normal world without using SGX. GRAMINE2 is a C-based
LibOS that supports unmodified binaries in SGX enclave [14].
OCCLUM is a Rust-based LibOS [74]. ENARX can host We-
bAssembly module for multiple TEE backends [13]. We use
the release version of these middlewares: Gramine v1.3.1-1,
Occlum 0.29.4-1, and Enarx 0.6.4. For all these evaluation
settings other than ENARX and LINUX where the enclave
size cannot be configured, we set the maximum enclave size
to 8GB 3 and the maximum thread number to 16. We mea-
sure the elapsed time from the data provider’s end since the
LibOS is transparent to the process. All the steps in CCaaS
are counted, except for LINUX where attestation cannot be
performed. ENARX does not support multi-threading, so we
omit its multi-threading performance.
• CPU-bound: AI Inference. We use TVM to compile
ResNet152 Model [17] as a library and link it to our frame-
work, The Python script achieves this task in 125 lines of code
(LoC), and the Rust function of the ResNet CC Task contains
50 LoC. We believe such porting effort is acceptable. It takes
600 KB ndarray input and outputs a label.
• Memory-bound: FASTA. We port the FASTA format ge-
nomic sequence generation algorithm [86]. This algorithm
generates DNA sequences by copying from a given sequence
and weighted random selection from two alphabets. The input
and output sizes are both 4.4MB FASTA format sequences.

1We do not evaluate middlewares on SEV since it has no compatibility
concern as SGX, hence few middlewares support SEV.

2Gramine is previously called Graphene [23].
3For Occlum, an additional 320MB memory is reserved for LibOS.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(m

s)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

T
im

e
(s

)
us

ed
pe

r
re

qu
es

t

(b) Multi-threaded.

Figure 7: Macrobenchmark: AI inference execution time.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
T

im
e

(s
)

us
ed

pe
r

re
qu

es
t

(b) Multi-threaded.

Figure 8: Macrobenchmark: FASTA execution time.

• IO- and memory- bound: In-memory key-value database

(KVDB). We use hashbrown [80], a Rust port of Google Swiss
Table, to build an in-memory KVDB. We leverage YCSB [27],
a standard benchmark for KV stores, to generate datasets and
workloads in evaluations. The dataset contains 220 KV of
8B keys paired with 1KB value, and the whole dataset is
1GB. We pick two workloads: A contains 50% reads and 50%
writes, while C contains 100% reads. These two representative
workloads are the lower and upper bounds for read-write
ratios in YCSB, demonstrating a real-world deployment.

We depict the results of AI inference, FASTA, and KVDB
in Figure 7, Figure 8 and Figure 9, respectively. In multi-
threading scenarios of AI inference and FASTA tasks, we
present the average service time per request after serving all
four data providers. By comparing NATIVE with our solu-
tion, we confirm again that the overhead induced by PoCF
protections is minor. In the KVDB payload where eight data
providers dispatch queries, POCF incurs 1.12% and 6.92%
overhead in single-thread mode and 1.98% and 4.95% over-
head in multi-threading compared to NATIVE, respectively
on SGX and SEV. In the AI inference task, we notice that
PoCF has comparable performance with other TEE middle-
wares, both in single-threaded and multi-threaded scenarios
(Figure 7). However, in the FASTA task, LibOSes-based solu-
tions outperform PoCF, and their advantages are greater than
those in the AI inference task. In KVDB payloads, LibOSes
perform much better than SGX PoCF. We attribute this to data
dependency and lack of I/O optimization in our SGX imple-
mentation, while SEV necessitates no network optimization.

INDIANA UNIVERSITY

Macrobenchmark:�FASTA

37

Table 5: Identity Task: Time (ms) under Different Data Sizes.

Config 1KB 10KB 100KB 1MB 10MB 100MB
NATIVE X 275.8 281.1 296.3 536.7 3026.5 28018.3
P W/O T X 278.3 280.4 298.6 541.1 3033.9 28022.9
P W/ T X 277.3 287.4 301.7 545.0 3043.7 28215.0
NATIVE V 489.1 487.3 449.7 495.6 502.0 923.3
POCF V 489.5 492.3 454.4 499.8 506.5 934.8

P: PoCF without data flow tracking; T data flow tracking; X: SGX; V: SEV

and MIRAI) incur no runtime overhead. Comparing the re-
sults of P W/O T X and P W/ T X in Table 5, we observe
that typestate transition only incurs 0.82% performance degra-
dation on average, which is very minor. Another portion of
runtime overhead in PoCF comes from residue cleanup (i.e.,
zerorizing the stack and register), which incurs 0.42% over-
head by comparing P W/O T X and NATIVE X. As shown
in Figure 6, zerorizing more pages does not spend more time
significantly, and we can even set it to the maximum stack
size. In our evaluations, we set the number of cleared pages
as 20 because it is enough for the benchmarks.
Macrobenchmarks. We port three the real-world applica-
tions to PoCF and other well-maintained SGX middlewares1.
POCF and NATIVE are the same as those in the microben-
mark. LINUX is the setting where NATIVE is executed in the
normal world without using SGX. GRAMINE2 is a C-based
LibOS that supports unmodified binaries in SGX enclave [14].
OCCLUM is a Rust-based LibOS [74]. ENARX can host We-
bAssembly module for multiple TEE backends [13]. We use
the release version of these middlewares: Gramine v1.3.1-1,
Occlum 0.29.4-1, and Enarx 0.6.4. For all these evaluation
settings other than ENARX and LINUX where the enclave
size cannot be configured, we set the maximum enclave size
to 8GB 3 and the maximum thread number to 16. We mea-
sure the elapsed time from the data provider’s end since the
LibOS is transparent to the process. All the steps in CCaaS
are counted, except for LINUX where attestation cannot be
performed. ENARX does not support multi-threading, so we
omit its multi-threading performance.
• CPU-bound: AI Inference. We use TVM to compile
ResNet152 Model [17] as a library and link it to our frame-
work, The Python script achieves this task in 125 lines of code
(LoC), and the Rust function of the ResNet CC Task contains
50 LoC. We believe such porting effort is acceptable. It takes
600 KB ndarray input and outputs a label.
• Memory-bound: FASTA. We port the FASTA format ge-
nomic sequence generation algorithm [86]. This algorithm
generates DNA sequences by copying from a given sequence
and weighted random selection from two alphabets. The input
and output sizes are both 4.4MB FASTA format sequences.

1We do not evaluate middlewares on SEV since it has no compatibility
concern as SGX, hence few middlewares support SEV.

2Gramine is previously called Graphene [23].
3For Occlum, an additional 320MB memory is reserved for LibOS.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

T
im

e
(m

s)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

T
im

e
(s

)
us

ed
pe

r
re

qu
es

t

(b) Multi-threaded.

Figure 7: Macrobenchmark: AI inference execution time.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

(a) Single-threaded.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
(s

)
us

ed
pe

r
re

qu
es

t

(b) Multi-threaded.

Figure 8: Macrobenchmark: FASTA execution time.

• IO- and memory- bound: In-memory key-value database

(KVDB). We use hashbrown [80], a Rust port of Google Swiss
Table, to build an in-memory KVDB. We leverage YCSB [27],
a standard benchmark for KV stores, to generate datasets and
workloads in evaluations. The dataset contains 220 KV of
8B keys paired with 1KB value, and the whole dataset is
1GB. We pick two workloads: A contains 50% reads and 50%
writes, while C contains 100% reads. These two representative
workloads are the lower and upper bounds for read-write
ratios in YCSB, demonstrating a real-world deployment.

We depict the results of AI inference, FASTA, and KVDB
in Figure 7, Figure 8 and Figure 9, respectively. In multi-
threading scenarios of AI inference and FASTA tasks, we
present the average service time per request after serving all
four data providers. By comparing NATIVE with our solu-
tion, we confirm again that the overhead induced by PoCF
protections is minor. In the KVDB payload where eight data
providers dispatch queries, POCF incurs 1.12% and 6.92%
overhead in single-thread mode and 1.98% and 4.95% over-
head in multi-threading compared to NATIVE, respectively
on SGX and SEV. In the AI inference task, we notice that
PoCF has comparable performance with other TEE middle-
wares, both in single-threaded and multi-threaded scenarios
(Figure 7). However, in the FASTA task, LibOSes-based solu-
tions outperform PoCF, and their advantages are greater than
those in the AI inference task. In KVDB payloads, LibOSes
perform much better than SGX PoCF. We attribute this to data
dependency and lack of I/O optimization in our SGX imple-
mentation, while SEV necessitates no network optimization.

INDIANA UNIVERSITY

Macrobenchmark:�In-memory�KVDB

38

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

20

40

60

80

100

120

140

160

La
te

nc
y

(u
s)

YCSB Workload A

YCSB Workload C

(a) Single-Thread Latency.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

100

200

300

400

500

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(b) Single-Thread Throughput.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

10

20

30

40

50

60

La
te

nc
y

(u
s)

YCSB Workload A

YCSB Workload C

(c) Multi-Thread Latency.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0
50

100
150
200
250
300
350
400

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(d) Multi-Thread Throughput.

Figure 9: Macrobenchmark: KVDB latency & throughput.

For example, Gramine and Occlum have rigorous optimiza-
tions on network I/O [15, 23]. We also observe that Occlum’s
performance downgrades in KVDB’s multi-threading scenar-
ios (Figure 9(c) and Figure 9(a)) [16]. Gramine and SEV ex-
perienced the same problem but to a less extent (Figure 9(d)).
It may be caused by context switches, which offset the per-
formance benefited from concurrency. However, this gap in
single-threaded scenarios is significantly narrowed by concur-
rency. Our future work include I/O optimizations.

8 Discussion

Other Attack Vectors. Other attack vectors, such as side-
channel attacks, although not within the scope of this work,
can still lead to privacy breaches. However, different side-
channels usually require orthogonal mitigations. For ex-
ample, timing side-channels can be addressed by imple-
menting constant-time operations [6]. MIRAI can also ver-
ify the constant-time property for the Rust code. For at-
tacks on page [83, 89, 91] and micro-architectural side-
channels [24, 73, 81, 82], separate low-level mechanisms can
be utilized, such as binary rewriting [88] and instrumen-
tation [49, 62]. Although these low-level mitigations can
hardly be verified at the programming language level, the
data provider can still verify that the remote enclave applies
these defenses via remote attestation. Another potential threat
is the denial of service (DoS) attack. If the enclave is sus-
pended during the service (e.g., caused by an AEX without
resuming in SGX), the residue may not be wiped out in this
service cycle. However, DoS attacks cannot threaten privacy,

as long as memory encryption is not compromised.
Rust Code Verfication. Verification on Rust code is still at an
early stage. We tested many verification tools for Rust. Prusti
strikes a balance between usability and complexity but can fail
to verify some of the Rust features like nested generics and
complex trait objects; the verification also takes a longer time.
Rustbelt [54] reached its end of life in 2021 and no longer
supports newer versions of Rust. Creusot [33], however, is
strictly tied to a specific version of the nightly Rust toolchain
that conflicts with Rust SGX SDK. Creusot’s contracts are
also intrusive, meaning that we need to write specifications
for library functions. Aneaes [45] uses lambda calculus but is
immature and does not support some common Rust features.

Another limitation is the imprecision of taint analysis tools.
The inherent complexity plus the intricate design of Rust
makes taint analysis awkward in dealing with some cases. For
example, when a struct has tainted fields, it would not be prop-
agated with a taint tag. Additionally, the approximation and
modeling approaches adopted by taint analysis tools might be
imprecise, resulting in issues such as over-tainting [55].

9 Related Work

Formal Models and Verification. Moat builds formal mod-
els for x86 with SGX instructions and the adversary [76]. It
also builds a type system satisfying confidentiality. BesFS
implements a series of filesystem interfaces for enclaves and
proved its safety in Coq [75]. Subramanyan et al. also estab-
lish a model for secure remote execution of enclaves [78].
Komodo provides a verified software monitor implementing
enclaves [39]. However, their code can hardly be utilized in
real-world TEEs because of the lack of runtime support of the
verification languages used to prove the properties. Besides,
those models cannot be directly applied in CCaaS.
CCaaS Frameworks. In recent years, several frameworks has
emerged to back CCaaS. Apache Teaclave, a FaaS platform,
takes input from multiple parties to perform CC [79]. Enarx,
Veracruz, and Oak integrate WebAssembly support to conduct
confidential computing tasks [13, 72, 84]. There are also a lot
of academia and industry projects making an effort to run
unmodified binaries by offering a runtime [4,23,31,46,60,74,
90]. However, these middlewares either bypass the privacy
concerns or fail to provide a systematic solution to users.

10 Conclusion

This paper presents PoBF, a privacy protection principle for
confidential computing, and PoCF, a PoBF-compliant Frame-
work prototype. Leveraging Rust’s safety features and type
system, we design a state machine for CCaaS based on type-
state, which supports different hardware TEEs. Besides, the
PoCF verifier is realized to guarantee two PoBF requirements

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

20

40

60

80

100

120

140

160

La
te

nc
y

(u
s)

YCSB Workload A

YCSB Workload C

(a) Single-Thread Latency.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

E
na

rx

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

100

200

300

400

500

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(b) Single-Thread Throughput.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0

10

20

30

40

50

60

La
te

nc
y

(u
s)

YCSB Workload A

YCSB Workload C

(c) Multi-Thread Latency.

Li
nu

x

SG
X
-N

at
iv

e

SG
X
-P

oC
F

O
cc

lu
m

G
ra

m
in

e

SE
V
-N

at
iv

e

SE
V
-P

oC
F

0
50

100
150
200
250
300
350
400

T
hr

ou
gh

pu
t

(K
O

ps
)

YCSB Workload A

YCSB Workload C

(d) Multi-Thread Throughput.

Figure 9: Macrobenchmark: KVDB latency & throughput.

For example, Gramine and Occlum have rigorous optimiza-
tions on network I/O [15, 23]. We also observe that Occlum’s
performance downgrades in KVDB’s multi-threading scenar-
ios (Figure 9(c) and Figure 9(a)) [16]. Gramine and SEV ex-
perienced the same problem but to a less extent (Figure 9(d)).
It may be caused by context switches, which offset the per-
formance benefited from concurrency. However, this gap in
single-threaded scenarios is significantly narrowed by concur-
rency. Our future work include I/O optimizations.

8 Discussion

Other Attack Vectors. Other attack vectors, such as side-
channel attacks, although not within the scope of this work,
can still lead to privacy breaches. However, different side-
channels usually require orthogonal mitigations. For ex-
ample, timing side-channels can be addressed by imple-
menting constant-time operations [6]. MIRAI can also ver-
ify the constant-time property for the Rust code. For at-
tacks on page [83, 89, 91] and micro-architectural side-
channels [24, 73, 81, 82], separate low-level mechanisms can
be utilized, such as binary rewriting [88] and instrumen-
tation [49, 62]. Although these low-level mitigations can
hardly be verified at the programming language level, the
data provider can still verify that the remote enclave applies
these defenses via remote attestation. Another potential threat
is the denial of service (DoS) attack. If the enclave is sus-
pended during the service (e.g., caused by an AEX without
resuming in SGX), the residue may not be wiped out in this
service cycle. However, DoS attacks cannot threaten privacy,

as long as memory encryption is not compromised.
Rust Code Verfication. Verification on Rust code is still at an
early stage. We tested many verification tools for Rust. Prusti
strikes a balance between usability and complexity but can fail
to verify some of the Rust features like nested generics and
complex trait objects; the verification also takes a longer time.
Rustbelt [54] reached its end of life in 2021 and no longer
supports newer versions of Rust. Creusot [33], however, is
strictly tied to a specific version of the nightly Rust toolchain
that conflicts with Rust SGX SDK. Creusot’s contracts are
also intrusive, meaning that we need to write specifications
for library functions. Aneaes [45] uses lambda calculus but is
immature and does not support some common Rust features.

Another limitation is the imprecision of taint analysis tools.
The inherent complexity plus the intricate design of Rust
makes taint analysis awkward in dealing with some cases. For
example, when a struct has tainted fields, it would not be prop-
agated with a taint tag. Additionally, the approximation and
modeling approaches adopted by taint analysis tools might be
imprecise, resulting in issues such as over-tainting [55].

9 Related Work

Formal Models and Verification. Moat builds formal mod-
els for x86 with SGX instructions and the adversary [76]. It
also builds a type system satisfying confidentiality. BesFS
implements a series of filesystem interfaces for enclaves and
proved its safety in Coq [75]. Subramanyan et al. also estab-
lish a model for secure remote execution of enclaves [78].
Komodo provides a verified software monitor implementing
enclaves [39]. However, their code can hardly be utilized in
real-world TEEs because of the lack of runtime support of the
verification languages used to prove the properties. Besides,
those models cannot be directly applied in CCaaS.
CCaaS Frameworks. In recent years, several frameworks has
emerged to back CCaaS. Apache Teaclave, a FaaS platform,
takes input from multiple parties to perform CC [79]. Enarx,
Veracruz, and Oak integrate WebAssembly support to conduct
confidential computing tasks [13, 72, 84]. There are also a lot
of academia and industry projects making an effort to run
unmodified binaries by offering a runtime [4,23,31,46,60,74,
90]. However, these middlewares either bypass the privacy
concerns or fail to provide a systematic solution to users.

10 Conclusion

This paper presents PoBF, a privacy protection principle for
confidential computing, and PoCF, a PoBF-compliant Frame-
work prototype. Leveraging Rust’s safety features and type
system, we design a state machine for CCaaS based on type-
state, which supports different hardware TEEs. Besides, the
PoCF verifier is realized to guarantee two PoBF requirements

